First Artificial Molecular Pump Uses Non-equilibrium Chemistry


An artificial molecular pump that uses molecules to pump other molecules has been developed by scientists at Northwestern University. The tiny machine, inspired by nature, may some day be used to power other molecular machines, such as artificial muscles.

The new mechanism simulates the pumping of life-sustaining proteins which move small molecules inside living cells to metabolize and store energy from food. As its food, the artificial pump gets it’s power from chemical reactions. Molecules are driven step-by-step from a low-energy state to a high-energy state, far removed from equilibrium.

Nature had billions of years to hone its complex molecular machinery. Modern science is today just starting to scratch the surface of what may be possible in the future.

Senior author Sir Fraser Stoddart, said:

Stoddart’s team has been working on artificial molecular machines for several years. One challenge they have faced for quite a while is how to power their machines.

This latest advance may allow them to make machines that perform tasks at the molecular level.

Paul R. McGonigal, one of authors of the study, said:

First author Chuyang Cheng, a fourth-year graduate student in Stoddart’s laboratory, added:

The miniscule molecular machine threads the rings around a nanoscopic chain, a sort of axle, and squeezes the rings together, with only a few nanometers separating them.

Currently, the artificial molecular pump is able to force only two rings together, but the researchers believe it won’t be long before they can extend its operation to tens of rings and store more energy.

Reference:

Chuyang Cheng, Paul R. McGonigal, Severin T. Schneebeli, Hao Li, Nicolaas A. Vermeulen, Chenfeng Ke & J. Fraser Stoddart An artificial molecular pump Nature Nanotechnology (2015) doi:10.1038/nnano.2015.96

Illustration: A blueprint for an artificial molecular pump that acts to compartmentalize rings in a high-energy state on a polymethylene chain. Credit: Nature Nanotechnology (2015)

See also